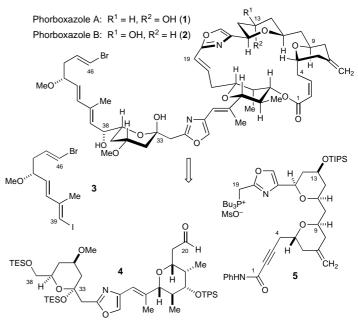
- [8] S. Kano, Y. Tanaka, E. Sugino, S. Hibino, Synthesis 1980, 695-697.
- [9] J. Q. Wang, Y. M. Zhang, Synth. Commun. 1995, 25, 3545-3547.
- [10] R. Balicki, Synthesis 1991, 155-156.
- [11] a) T.-L. Ho, C. M. Wong, Synth. Commun. 1973, 3, 37-38; b) H. Suzuki, H. Manabe, R. Enokiya, Y. Hanazaki, Chem. Lett. 1986, 1339 - 1340
- [12] J. Drabowicz, M. Mikolajczyk, Synthesis 1978, 138-139.
- [13] T. L. Chen, A. Shaver, T. H. Chan, J. Organomet. Chem. 1989, 367, C5-C7.
- [14] Y.-M. Zhang, R.-H. Lin, Youji Huaxue 1987, 361 364.
- [15] X. Wang, L. K. Woo, J. Org. Chem. 1998, 63, 356-360.
- [16] V. K. Clauss, H. Bestian, Liebigs Ann. Chem. 1962, 654, 8-19.
- [17] a) E. J. Corey, M. Jautelet, J. Am. Chem. Soc. 1967, 89, 3912-3914; b) E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353-1364; c) A. W. Johnson, V. J. Hruby, J. L. Williams, J. Am. Chem. Soc. 1964, 86, 918-922; d) B. M. Trost, R. LaRochelle, Tetrahedron Lett. 1968, 9, 3327-3330; e) J. E. Baldwin, R. E. Peavy, Tetrahedron Lett. **1968**. 9. 5029 - 5031.

## Asymmetric Synthesis of Phorboxazole B— Part I: Synthesis of the $C_{20}-C_{38}$ and $C_{39}-C_{46}$ Subunits\*\*

David A. Evans,\* Victor J. Cee, Thomas E. Smith, Duke M. Fitch, and Patricia S. Cho

Phorboxazoles A (1) and B (2) are marine natural products isolated from a newly discovered species of Indian Ocean sponge (genus Phorbas sp.).[1] These substances are representatives of a new class of macrolides and are among the most cytostatic natural products known; they inhibit the growth of tumor cells at nanomolar concentrations (mean  $GI_{50} = 1.58 \times$ 10<sup>-9</sup> M).<sup>[2]</sup> As a result, phorboxazoles A and B have been selected by the National Cancer Institute for in vivo antitumor trials.[1b] The unique structure and impressive biological activity of these molecules have led to widespread efforts to synthesize these substances,[3] and a total synthesis of phorboxazole A has recently been reported.[3u] In this and the following communication<sup>[4]</sup> we describe our work culminating in the synthesis of phorboxazole B.


The synthesis plan (Scheme 1) calls for an early disconnection of the  $C_{38}$ – $C_{39}$  bond to provide the triene side chain 3, which allows the remainder of the molecule to be divided into fragments of roughly equal complexity. Disconnection through the C<sub>19</sub>-C<sub>20</sub> E olefin and macrolactone moieties provides the

[\*] Prof. D. A. Evans, V. J. Cee, T. E. Smith, D. M. Fitch, P. S. Cho Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138 (USA)

Fax: (+1)617-495-1460

E-mail: evans@chemistry.harvard.edu

[\*\*] Financial support was provided by the National Institutes of Health (GM-33328) and the National Science Foundation. An American Cancer Society Postdoctoral Fellowship to T.E.S. and an NSF Predoctoral Fellowship to V.J.C. are gratefully acknowledged. The NIH BRS Shared Instrumentation Grant Program 1-S10-RR04870 and the NSF (CHE 88-14019) are acknowledged for providing NMR facilities.



Scheme 1. Retrosynthetic analysis of phorboxazole B. (See ref. [5] for abbreviations.)

 $C_{20}-C_{38}$  core fragment 4 and the  $C_1-C_{19}$  bispyran fragment 5. The distinctive features of this plan include a Wittig reaction to form the  $C_{19}$ – $C_{20}$  olefin, macrolactonization of a  $C_1$ – $C_{38}$ seco acid, and late-stage incorporation of the fully functionalized triene side chain. The utilization of our recently developed Cu2+-catalyzed enantioselective aldol reaction[6] [Eq. (1)] provides the foundation for the synthesis of two of

OTMS OTMS 
$$Ph^{\frac{1}{2}} = \frac{1}{2} + \frac{1}{2} +$$

the polyacetate regions of the molecule  $(C_4 - C_9 \text{ and } C_{33} - C_{38})$ , while an enantioselective stannous triflate catalyzed aldol reaction has been employed to assemble the  $C_{13}$  –  $C_{19}$  oxazolecontaining subunit [Eq. (2) where R = 2-phenylethene].<sup>[4]</sup>

The synthesis of the polypropionate region of the central core fragment 4 began with the addition of the (E)-boron enolate of 9<sup>[7]</sup> to the known aldehyde 8,<sup>[8]</sup> which delivered the desired anti aldol adduct in 97 % yield (94:6 dr) (Scheme 2).[9, 10] Subsequent hydroxyl-directed reduction<sup>[11]</sup> of the C<sub>24</sub> ketone provided anti diol 10, which was isolated in 81% yield as a single diastereomer after crystallization.[12] Cyclization of 10 under basic conditions (cat. DBU, CH<sub>2</sub>Cl<sub>2</sub>) followed by in situ

Scheme 2. Synthesis of the  $C_{20}-C_{32}$  synthon. a) (*c*hex)<sub>2</sub>BCl, EtNMe<sub>2</sub>, Et<sub>2</sub>O, 0°C; then **8**,  $-78 \rightarrow 0$ °C; 97% (94:6 dr); b) Me<sub>4</sub>NBH(OAc)<sub>3</sub>, AcOH, 0°C  $\rightarrow$ RT; 81% (>95:5 dr); c) cat. DBU, CH<sub>2</sub>Cl<sub>2</sub>, RT; then imidazole and TPSCl, RT; 81%; d) *tert*-butyl acetate, LDA, THF, -78°C; e) BF<sub>3</sub>·OEt<sub>2</sub>, Et<sub>3</sub>SiH, CH<sub>2</sub>Cl<sub>2</sub>,  $-78 \rightarrow -30$ °C; 91% (2 steps); f) LiAlH<sub>4</sub>, Et<sub>2</sub>O/THF, -20°C; 96%; g) TMSCl, imidazole, cat. DMAP, DMF, RT; 99%.  $X_c = (4R)$ -4-benzyl-2-oxazolidinone. (See ref. [5] for abbreviations.)

silylation (TPSCl, imidazole) yielded lactone **11**, which was subsequently alkylated with the lithium enolate derived from *tert*-butyl acetate to provide hemiketal **12**. Reduction of the unpurified hemiketal (BF<sub>3</sub>·OEt<sub>2</sub>, Et<sub>3</sub>SiH)<sup>[13]</sup> afforded the desired *cis*-tetrahydropyran **13** (>95:5 dr) in 91% yield for the two steps.<sup>[12]</sup> Reduction of the ester (LiAlH<sub>4</sub>; 96%) and protection of the resulting primary hydroxyl group (TMSCl, imidazole; 99%) completed the C<sub>20</sub>-C<sub>32</sub> core pyran fragment **14** in 55% overall yield for the eight-step sequence.

Completion of the  $C_{20}-C_{38}$  core fragment **4** required the union of the  $C_{33}-C_{38}$  lactone fragment **17** with methyloxazole

**14.** The synthesis of the requisite lactone began with aldol adduct **7**, which was cyclized to the unsaturated lactone **15** in 76 % yield under acidic conditions (TMSCl, MeOH,  $CH_2Cl_2$ , Scheme 3).<sup>[14]</sup> Diastereoselective hydrogenation of **15** was accomplished with Raney-nickel<sup>[15]</sup> to afford methyl ether **16** containing the desired R configuration at the  $C_{35}$  methoxy residue (86%; >95:5 dr).<sup>[12]</sup> In two subsequent steps the benzyl group was replaced with a triethylsilyl group to provide the desired  $C_{33}$ – $C_{38}$  lactone **17**.

The plan for coupling lactone 17 with fragment 14 involved metalation of the C<sub>32</sub> methyl group on the oxazole ring followed by alkylation with the lactone to form the  $C_{32}$ – $C_{33}$ bond.<sup>[16]</sup> Initial attempts to selectively lithiate methyloxazole 14 using common bases (LDA, LiTMP, nBuLi) were thwarted by the comparable kinetic acidity of the C<sub>30</sub> proton. It was eventually discovered that lithium diethylamide possessed the unique ability to provide the desired lithiated species with complete selectivity by an equilibration process that occurred at low temperatures.[3h] Lithiation of 14 with this base followed by addition of lactone 17 afforded the desired hemiketal 18 as a single regio- and stereoisomer. Although stable to silica gel chromatography, this material was carried forth through the subsequent two steps without purification for operational simplicity. While reported methods for hemiketal silylation<sup>[17]</sup> led to high levels of decomposition when applied to substrate 18, the use of triethylsilyl trifluoromethanesulfonate and pyridine in a diethyl ether/acetonitrile mixture proved successful, providing the desired mixed-silyl ketal as a single anomer.[18] Selective cleavage of the C<sub>20</sub> primary trimethylsilyl ether under basic conditions (NaHCO3, MeOH) gave an intermediate alcohol (80% from 14), which upon subsequent oxidation with the Dess-Martin periodinane<sup>[19]</sup> provided the  $C_{20}$ - $C_{38}$ core fragment 4 in 44% overall yield with a longest linear sequence of 12 steps from aldehyde 8.

The synthesis of the  $C_{39}-C_{46}$  triene side-chain synthon (Scheme 4) began with a  $BF_3 \cdot OEt_2$ -promoted alkenyllithium addition to (R)-3-(triphenylmethyl)-1,2-epoxypropane<sup>[20]</sup> to yield alcohol **19**.<sup>[21]</sup> Methylation of the free hydroxyl group

Scheme 3. Synthesis of the  $C_{20}$  –  $C_{38}$  synthon 4. a) TMSCl, MeOH,  $CH_2Cl_2$ ,  $0^{\circ}C$ ; 76%; b)  $H_2$ , Raney-Ni, iPrOH, RT; 86% (> 95:5 dr); c)  $H_2$ , cat. 10% Pd/C, EtOAc, RT; d) TESCl, imidazole, cat. DMAP, DMF, RT; 94% (2 steps); e) **14**, LiNEt<sub>2</sub>, THF, -78%C; then **17**, -78%C; f) TESOTf, pyr, Et<sub>2</sub>O:CH<sub>3</sub>CN (10:1), -50%C; g) NaHCO<sub>3</sub>, MeOH, RT; 80% (3 steps); h) Dess – Martin periodinane, pyr,  $CH_2Cl_2$ , RT; 100%. (See ref. [5] for abbreviations.)

Scheme 4. Synthesis of the  $C_{39}-C_{46}$  synthon 3. a) nBuLi, THF,  $-78\,^{\circ}C$ ; then  $BF_3\cdot OEt_2$  and (R)-3-(triphenylmethyl)-1,2-epoxypropane,  $-78\,^{\circ}C$ ; 63%; b) NaH, DMF,  $0\,^{\circ}C$ ; then MeI, RT; 96%; c) NBS,  $CH_3CN$ ,  $0\,^{\circ}C$ ; 98%; d) TsOH,  $Et_2O$ :MeOH (1:1), RT; 99%; e) 2-mercaptobenzthiazole,  $Ph_3P$ , DIAD, THF, RT; then ammonium molybdate,  $H_2O_2$ , MeOH,  $0\,^{\circ}C$ ; 99%; f) (E)-3-iodo-2-methylprop-2-enal, THF,  $-78\,^{\circ}C$ ; then NaHMDS,  $-78\,^{\circ}C$   $\rightarrow$ RT; 75% (>95:5 E:Z). (See ref. [5] for abbreviations.)

(NaH, MeI; 96%), tin-bromine exchange (NBS; 98%), and deprotection of the trityl group (TsOH; 99%) provided an intermediate alcohol which was converted into the benzthiazole sulfone **20** in a one-pot procedure. A subsequent Julia olefination provided the desired  $C_{39}-C_{46}$  side chain in 75% yield and > 95:5 E:Z selectivity.

At this point it was necessary to determine the feasibility of the projected late-stage side-chain addition using a model aldehyde. Aldehyde 22 (Scheme 5) was constructed in an

Scheme 5. Construction of a model aldehyde. a) LiNEt $_2$ , THF,  $-78\,^{\circ}$ C; then 17,  $-78\,^{\circ}$ C; 79%; b) TESOTf, pyr, 3:2 Et $_2$ O:CH $_3$ CN,  $-50\,^{\circ}$ C; 98%; c) HF $_2$ Pyr, pyr, THF, 0 $^{\circ}$ C; 93%; d) SO $_3$  $_2$ Pyr, TEA, DMSO, CH $_2$ Cl $_2$ ,  $-5\,^{\circ}$ C; 100%. (See ref. [5] for abbreviations.)

analogous manner to the parent hemiketal **18** by addition of the lithiated 2-methyloxazole **21**<sup>[3h]</sup> to lactone **17**. Silylation under the previously described conditions, deprotection of the primary triethylsilyl ether (HF  $\cdot$  pyr, pyr), and Parikh – Doering oxidation<sup>[24]</sup> provided the model aldehyde **22** in four steps and 72 % overall yield.

The configuration of the  $C_{38}$  hydroxyl moiety demands that the  $C_{38}$ – $C_{39}$  bond construction be executed with chelation control. [25] Accordingly, model studies were undertaken with aldehyde **22** and the triene fragment **3** to address this coupling process (Table 1). It was first determined that site-selective metal – halogen exchange could be implemented on triene **3** at the  $C_{39}$  terminus upon treatment with *tert*-butyllithium (1.9 equiv) in ether at  $-105\,^{\circ}\mathrm{C}$  to give the desired alkenyllithium reagent. [26, 27] Not surprisingly, this organolithium species slightly favored the formation of the undesired diastereomer [12] in reactions with **22** (entry 1, Table 1), which necessitated transmetalation to a more chelate-prone alkenylmetal. The derived alkenylzincate, [28] Grignard, and aluminate, [29] each provided modest levels of diastereoselectivity

in ethereal solvents (entries 2 and 4). It was found that chelate-controlled selectivity could be substantially improved by carrying out the addition in methylene chloride (entries 3, 5, and 6).<sup>[30]</sup> Ultimately, the higher yielding Grignard reagent (entry 5) derived from freshly prepared MgBr<sub>2</sub><sup>[31]</sup> was chosen for the final fragment coupling.<sup>[4]</sup>

Table 1. Side chain addition experiments.

 $R = CH_2OTIPS$ 

| Entry | Additive          | Solvent               | Yield [%] | C <sub>38</sub> diastereoselectivity (R:S) |
|-------|-------------------|-----------------------|-----------|--------------------------------------------|
| 1     | _                 | Et <sub>2</sub> O     | 54        | 1:2                                        |
| 2     | $Me_2Zn$          | $Et_2O$               | 80        | 9:1                                        |
| 3     | $Me_2Zn$          | $CH_2Cl_2$            | 60        | 20:1                                       |
| 4     | $MgBr_2$          | $Et_2O$               | 77        | 5:1                                        |
| 5     | $MgBr_2$          | $CH_2Cl_2$            | 79        | > 20:1                                     |
| 6     | $Me_3Al$          | $CH_2Cl_2$            | 71        | >20:1                                      |
| 7     | CeCl <sub>3</sub> | Et <sub>2</sub> O/THF | 35        | 1:7                                        |

The preceding discussion describes the stereoselective syntheses of the  $C_{39}-C_{46}$  triene side chain and  $C_{20}-C_{38}$  core fragment of the phorboxazole skeleton. In addition, a promising procedure for the projected  $C_{39}-C_{46}$  side chain fragment coupling was developed on a model system. In the following communication, the synthesis of the  $C_1-C_{19}$  bispyran subunit and fragment assembly to phorboxazole B is presented. [4]

Received: April 25, 2000 [Z 15024]

Isolation and structure elucidation: a) P. A. Searle, T. F. Molinski, J. Am. Chem. Soc. 1995, 117, 8126 – 8131; b) P. A. Searle, T. F. Molinski, L. J. Brzezinski, J. W. Leahy, J. Am. Chem. Soc. 1996, 118, 9422 – 9423; c) T. F. Molinski, Tetrahedron Lett. 1996, 37, 7879 – 7880.

<sup>[2]</sup> GI<sub>s0</sub> is defined as the concentration at which cell growth is inhibited by 50%. See ref. [1a] and [1b]. Phorboxazoles A and B display comparable biological activities, see ref. [1a].

<sup>[3]</sup> Phorboxazole synthetic studies: a) S. D. Rychnovsky, C. R. Thomas, Org. Lett. 2000, 2, 1217-1219; b) G. Pattenden, A. T. Plowright, Tetrahedron Lett. 2000, 41, 983 - 986; c) J. V. Schaus, J. S. Panek, Org. Lett. 2000, 2, 469-471; d) P. Wolbers, H. M. R. Hoffmann, F. Sasse, Synlett 1999, 11, 1808-1810; e) A. B. Smith III, P. R. Verhoest, K. P. Minbiole, J. J. Lim, Org. Lett. 1999, 1, 909-912; f) A. B. Smith III, K. P. Minbiole, P. R. Verhoest, T. J. Beauchamp, Org. Lett. 1999, 1, 913-916; g) P. Wolbers, A. M. Misske, H. M. R. Hoffmann, Tetrahedron Lett. 1999, 40, 4527 - 4530; h) D. A. Evans, V. J. Cee, T. E. Smith, K. J. Santiago, Org. Lett. 1999, 1, 87-90; i) P. Wolbers, H. M. R. Hoffmann, Synthesis 1999, 5, 797-802; j) A. M. Misske, H. M. R. Hoffmann, Tetrahedron 1999, 55, 4315-5324; k) D. R. Williams, M. P. Clark, Tetrahedron Lett. 1999, 40, 2291-2294; l) D. R. Williams, M. P. Clark, M. A. Berliner, Tetrahedron Lett. 1999, 40, 2287-2290; m) P. Wolbers, H. M. R. Hoffmann, Tetrahedron 1999, 55, 1905-1914; n) S. D. Rychnovsky, Y. Hu, B. Ellsworth, Tetrahedron Lett. 1998, 39, 7271 - 7274; o) I. Paterson, E. A. Arnott, Tetrahedron Lett. 1998, 39, 7185-7188; p) G. Pattenden, A. T. Plowright, J. A. Tornos, T. Ye, Tetrahedron Lett. 1998, 39, 6099-6102; q) T. Ye, G. Pattenden, Tetrahedron Lett. 1998, 39, 319-322; r) F. Ahmed, C. J. Forsyth,

- *Tetrahedron Lett.* **1998**, *39*, 183–186; s) R. D. Cink, C. J. Forsyth, *J. Org. Chem.* **1997**, *62*, 5672–5673; t) C. S. Lee, C. J. Forsyth, *Tetrahedron Lett.* **1996**, *37*, 6449–6452; u) total synthesis of phorboxazole A: C. J. Forsyth, F. Ahmed, R. D. Cink, C. S. Lee, *J. Am. Chem. Soc.* **1998**, *120*, 5597–5598.
- [4] D. A. Evans, D. M. Fitch, Angew. Chem. 2000, 112, 2636-2640; Angew. Chem. Int. Ed. 2000, 39, 2536-2540.
- [5] Abbreviations: dr = diastereomer ratio; TES = triethylsilyl; TPS = triphenylsilyl; TIPS = triisopropylsilyl; Ms = methanesulfonyl; Bn = benzyl; TMS = trimethylsilyl; DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene; DMF = N,N-dimethylformamide; DMAP = N,N-dimethylaminopyridine; LDA = lithium diisopropylamide; TMP = 2,2,6,6-tetramethylpiperidide; NBS = N-bromosuccinimide; Tr = trityl = triphenylmethyl; Ts = para-toluenesulfonyl; DIAD = diisopropylazodicarboxylate; THF = tetrahydrofuran; HMDS = hexamethyldisilazide; pyr = pyridine; TEA = triethylamine; DMSO = dimethyl sulfoxide; Tf = triflate = trifluoromethanesulfonyl.
- [6] D. A. Evans, M. C. Kozlowski, J. A. Murry, C. S. Burgey, K. R. Campos,
   B. T. Connell, R. J. Staples, J. Am. Chem. Soc. 1999, 121, 669-685.
- [7] D. A. Evans, M. D. Ennis, T. Le, N. Mandel, G. Mandel, J. Am. Chem. Soc. 1984, 106, 1154–1156.
- [8] a) D. L. Boger, T. T. Curran, J. Org. Chem. 1992, 57, 2235–2244;
   b) D. P. Provencal, C. Gardelli, J. A. Lafontaine, J. W. Leahy, Tetrahedron Lett. 1995, 36, 6033–6036.
- [9] The product ratio was determined by HPLC analysis (Zorbax,  $4.6 \times 150 \text{ mm}$ ,  $5 \mu \text{m}$  silica gel; 3% *i*PrOH in CH<sub>2</sub>Cl<sub>2</sub>, flow rate =  $1 \text{ mL min}^{-1}$ ;  $T_r \text{ minor} = 12.5 \text{ min}$ ;  $T_r \text{ major} = 14.9 \text{ min}$ ).
- [10] For examples of β-ketoimide aldol reactions, see a) D. A. Evans, H. P. Ng, J. S. Clark, D. L. Rieger, *Tetrahedron* 1992, 48, 2127–2142;
  b) D. A. Evans, H. P. Ng, D. L. Rieger, *J. Am. Chem. Soc.* 1993, 115, 11446–11459.
- [11] D. A. Evans, K. T. Chapman, E. M. Carreira, J. Am. Chem. Soc. 1988, 110, 3560 – 3578.
- [12] Product ratio determined by <sup>1</sup>H NMR analysis (500 MHz).
- [13] M. D. Lewis, J. K. Cha, Y. Kishi, J. Am. Chem. Soc. 1982, 104, 4976-4978.
- [14] For similar conditions employing ethylene glycol in place of methanol, see a) T. H. Chan, M. A. Brook, T. Chaly, *Synthesis* 1983, 203-205; b) ref. [4].
- [15] For a related reduction with Raney-Ni, see R. Bacardit, M. Moreno-Mañas, *Tetrahedron Lett.* 1980, 21, 551–554.
- [16] For reports of oxazole lithiation, see ref. [3h], and references therein.
- [17] A. B. Smith III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W. Leahy, R. E. Maleczka, Jr., J. Am. Chem. Soc. 1997, 119, 962-973;
   A. B. Smith III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W. Leahy, R. E. Maleczka, Jr., J. Am. Chem. Soc. 1995, 117, 5407-5408.
- [18] Conditions were adapted from: C. H. Heathcock, S. D. Young, J. P. Hagen, R. Pilli, U. Badertscher, J. Org. Chem. 1985, 50, 2095 2105.
- [19] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277 7287.
- [20] (R)-3-(triphenylmethyl)-1,2-epoxypropane is commercially available from Aldrich Chemical Co. and may also be prepared in 95 % ee by Sharpless asymmetric epoxidation of allyl alcohol and in situ tritylation. Recrystallization provides the enantiomerically enriched compound: H. S. Hendrickson, E. K. Hendrickson, Chem. Phys. Lipids 1990, 53, 115-120.
- [21] (E)-bis(tributylstannyl)ethylene was prepared by the following method: a) E. J. Corey, R. H. Wollenberg, J. Am. Chem. Soc. 1974, 96, 5581-5583; see also b) A. N. Nesmeyanov, A. E. Borisov, Dokl. Akad. Nauk SSSR 1967, 174, 96-99; For BF<sub>3</sub>·OEt<sub>2</sub>-promoted organolithium additions to epoxides, see c) M. J. Eis, J. E. Wrobel, B. Ganem, J. Am. Chem. Soc. 1984, 106, 3693-3694.
- [22] Conditions were adapted from: R. Bellingham, K. Jarowicki, P. Kocienski, V. Martin, Synthesis 1996, 285–296.
- [23] Conditions were adapted from: ref. [3p]. For the synthesis of (E)-3-iodo-2-methylprop-2-enal, see R. Baker, J. L. Castro, J. Chem. Soc. Perkin Trans. 1 1990, 47–65.
- [24] J. R. Parikh, W. E. von Doering, J. Am. Chem. Soc. 1967, 89, 5505 5507.
- [25] M. T. Reetz, Angew. Chem. 1984, 96, 542 555; Angew. Chem. Int. Ed. Engl. 1984, 23, 556 – 569.
- [26] After quenching the alkenyllithium with H<sub>2</sub>O, the selectivity of the lithium – halogen exchange was determined to be 20:1 (C<sub>39</sub>I:C<sub>46</sub>Br) by <sup>1</sup>H NMR spectroscopy.

- [27] We are aware of few examples of this type of selective lithium halogen exchange reaction. For a report involving bishalogenated arenes, see M. Kihara, M. Kashimoto, Y. Kobayashi, *Tetrahedron* 1992, 48, 67–78
- [28] For an example of a chelation-controlled zincate addition, see D. R. Williams, W. S. Kissel, J. Am. Chem. Soc. 1998, 120, 11198–11199.
- [29] For an example of a chelation-controlled aluminate addition, see H. Imogai, Y. Petit, M. Larcheveque, *Tetrahedron Lett.* 1996, 37, 2573–2576.
- [30] A similar solvent effect has been noted in additions of alkenyl Grignard reagents to α-alkoxyaldehydes: G. E. Keck, M. A. Andrus, D. R. Romer, J. Org. Chem. 1991, 56, 417 – 420.
- [31] For the preparation of MgBr<sub>2</sub> as a solution in Et<sub>2</sub>O/benzene, see M. Nakatsuka, J. A. Ragan, T. Sammakia, D. B. Smith, D. E. Uehling, S. L. Schreiber, J. Am. Chem. Soc. 1990, 112, 5583 5601.

## Asymmetric Synthesis of Phorboxazole B—Part II: Synthesis of the $C_1$ – $C_{19}$ Subunit and Fragment Assembly\*\*

David A. Evans\* and Duke M. Fitch

In the preceding communication the syntheses of the  $C_{20}$ – $C_{38}$  and  $C_{39}$ – $C_{46}$  phorboxazole B subunits were presented. Herein we focus on the synthesis of the final  $C_1$ – $C_{19}$  bispyran subunit 1 and the successful assembly of these fragments into phorboxazole B.

The retrosynthesis of the  $C_1$ – $C_{19}$  region (Scheme 1)<sup>[2]</sup> began with disconnection of the peripheral functionality at  $C_4$  and  $C_{19}$ , and the masking of leaving groups at these positions as differentially protected primary hydroxyl groups. The  $C_7$  exocyclic olefin was masked as a protected ketone and the  $C_{11}$  stereocenter was envisioned to arrive through reduction of hemiketal **2**. Ring-chain tautomerization of **2** and aldol disconnection of the  $C_{12}$ – $C_{13}$  bond affords the *trans* pyran methylketone fragment **3** and the oxazole aldehyde fragment **4**.

Construction of the  $C_4-C_{12}$  methylketone **3** began from the  $\delta$ -hydroxy- $\beta$ -ketoester **5** previously employed in the construction of the  $C_{33}-C_{38}$  lactone (Scheme 2).<sup>[1, 3]</sup> Treatment of **5** with ethylene glycol and trimethylsilyl chloride<sup>[4]</sup> resulted in a simultaneous cyclization and protection of the ketone to deliver lactone **6** in good yield. Reduction (DIBAIH) and acetylation (Ac<sub>2</sub>O, pyr, DMAP) provided **7** in quantitative

[\*\*] Financial support has been provided by the National Institutes of Health (GM-33328) and the National Science Foundation. The NIH BRS Shared Instrumentation Grant Program 1-S10-RR04870 and the NSF (CHE 88-14019) are acknowledged for providing NMR facilities.

<sup>[\*]</sup> Prof. D. A. Evans, D. M. Fitch Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138 (USA) Fax: (+1)617-495-1460 E-mail: evans@chemistrv.harvard.edu